class: title-slide # Risk Stratification Tools <br><br> ### Deputy Director Specialist Analytics Interview <br><br><br><br><br> ### <img src="./assets/img/crop.png" alt="Mainard icon" height="40px" /> Dr Chris Mainey <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#005EB8;" xmlns="http://www.w3.org/2000/svg"> <path d="M464 64H48C21.49 64 0 85.49 0 112v288c0 26.51 21.49 48 48 48h416c26.51 0 48-21.49 48-48V112c0-26.51-21.49-48-48-48zm0 48v40.805c-22.422 18.259-58.168 46.651-134.587 106.49-16.841 13.247-50.201 45.072-73.413 44.701-23.208.375-56.579-31.459-73.413-44.701C106.18 199.465 70.425 171.067 48 152.805V112h416zM48 400V214.398c22.914 18.251 55.409 43.862 104.938 82.646 21.857 17.205 60.134 55.186 103.062 54.955 42.717.231 80.509-37.199 103.053-54.947 49.528-38.783 82.032-64.401 104.947-82.653V400H48z"></path></svg> [c.mainey@nhs.net](mailto:c.mainey@nhs.net) <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#005EB8;" xmlns="http://www.w3.org/2000/svg"> <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"></path></svg> [@chrismainey](https://twitter.com/chrismainey) <svg viewBox="0 0 496 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#005EB8;" xmlns="http://www.w3.org/2000/svg"> <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg> [chrismainey](https://github.com/chrismainey) <svg viewBox="0 0 448 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#005EB8;" xmlns="http://www.w3.org/2000/svg"> <path d="M416 32H31.9C14.3 32 0 46.5 0 64.3v383.4C0 465.5 14.3 480 31.9 480H416c17.6 0 32-14.5 32-32.3V64.3c0-17.8-14.4-32.3-32-32.3zM135.4 416H69V202.2h66.5V416zm-33.2-243c-21.3 0-38.5-17.3-38.5-38.5S80.9 96 102.2 96c21.2 0 38.5 17.3 38.5 38.5 0 21.3-17.2 38.5-38.5 38.5zm282.1 243h-66.4V312c0-24.8-.5-56.7-34.5-56.7-34.6 0-39.9 27-39.9 54.9V416h-66.4V202.2h63.7v29.2h.9c8.9-16.8 30.6-34.5 62.9-34.5 67.2 0 79.7 44.3 79.7 101.9V416z"></path></svg> [chrismainey](https://www.linkedin.com/in/chrismainey/) <svg viewBox="0 0 512 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#005EB8;" xmlns="http://www.w3.org/2000/svg"> <path d="M294.75 188.19h-45.92V342h47.47c67.62 0 83.12-51.34 83.12-76.91 0-41.64-26.54-76.9-84.67-76.9zM256 8C119 8 8 119 8 256s111 248 248 248 248-111 248-248S393 8 256 8zm-80.79 360.76h-29.84v-207.5h29.84zm-14.92-231.14a19.57 19.57 0 1 1 19.57-19.57 19.64 19.64 0 0 1-19.57 19.57zM300 369h-81V161.26h80.6c76.73 0 110.44 54.83 110.44 103.85C410 318.39 368.38 369 300 369z"></path></svg> [0000-0002-3018-6171](https://orcid.org/0000-0002-3018-6171) <svg viewBox="0 0 496 512" style="height:1em;position:relative;display:inline-block;top:.1em;fill:#005EB8;" xmlns="http://www.w3.org/2000/svg"> <path d="M336.5 160C322 70.7 287.8 8 248 8s-74 62.7-88.5 152h177zM152 256c0 22.2 1.2 43.5 3.3 64h185.3c2.1-20.5 3.3-41.8 3.3-64s-1.2-43.5-3.3-64H155.3c-2.1 20.5-3.3 41.8-3.3 64zm324.7-96c-28.6-67.9-86.5-120.4-158-141.6 24.4 33.8 41.2 84.7 50 141.6h108zM177.2 18.4C105.8 39.6 47.8 92.1 19.3 160h108c8.7-56.9 25.5-107.8 49.9-141.6zM487.4 192H372.7c2.1 21 3.3 42.5 3.3 64s-1.2 43-3.3 64h114.6c5.5-20.5 8.6-41.8 8.6-64s-3.1-43.5-8.5-64zM120 256c0-21.5 1.2-43 3.3-64H8.6C3.2 212.5 0 233.8 0 256s3.2 43.5 8.6 64h114.6c-2-21-3.2-42.5-3.2-64zm39.5 96c14.5 89.3 48.7 152 88.5 152s74-62.7 88.5-152h-177zm159.3 141.6c71.4-21.2 129.4-73.7 158-141.6h-108c-8.8 56.9-25.6 107.8-50 141.6zM19.3 352c28.6 67.9 86.5 120.4 158 141.6-24.4-33.8-41.2-84.7-50-141.6h-108z"></path></svg> [www.mainard.co.uk](https://www.mainard.co.uk) .footnote[Presentation and code available: **https://github.com/chrismainey/risk_stratification_model_presentation**] .art_cap[R generative art - inspired by Antonio Sánchez Chinchón - @aschinchon] ??? __End 30 seconds__! Say hi - introduce myself ??? Presentation on github with references and code, share afterwards --- class: inverse center middle ## How risk stratification models could be used to improve health outcomes in the NHS ??? How you think risk stratification models could be used to improve health outcomes in the NHS --- ## What is risk-stratification? + Stratification (grouping or sorting) of population according to the risk of an event, usually determined by expert opinion, rule sets or statistical estimation of frequency based on correlated predictors. ??? These tools use relationships in historic population data to estimate the use of health care services for each member of a population. Risk stratification tools can be useful both for population planning purposes (known as “risk stratification for commissioning”) and for identifying which patients should be offered targeted, preventive support (known as “risk stratification for case finding”). -- ### Benefits for health outcomes + Quantified individual risk can allow for more personalised care in many settings -- + Understanding distribution of needs + Commissioning the right sized services to meet needs + Planning and delivering service in a way that is accessible or appropriate to the population -- + Monitoring: + Allow closer monitoring of high risk patients (e.g. diabetes patients and foot-care). + Change in risk can itself be a trigger for intervention + Quality / Outcome monitoring --- class: inverse center middle ## How to evaluate whether the risk stratification model(s) are reliably predicting population vs. individual risks ??? How you would evaluate whether the risk stratification model(s) was reliably predicting population vs. individual risks --- > _"...Since all models are wrong the scientist must be alert to what is importantly wrong. It is inappropriate to be concerned about mice when there are tigers abroad..."_ (Box, 1976) -- ### Assessing models + Models generally built for global accuracy (may or may not be population) + Understanding metrics: + AUC / R<sup>2</sup> global proportion of variance explained + MSE / RMSE / MAE - average errors per observation -- ### Validation in the population + Sub-group / marginal analysis + Understand where fit is poor + Class imbalance + Population weighting to assess fit e.g.(van Alten Domingue, et al., 2022) --- class: inverse center middle ## Considerations for deployment of risk stratification models across a complex health and care system ??? Considerations for deployment of risk stratification models across a complex health and care system --- > _"...The right balance between productivity and equity is a value judgement. The decision will rest with ICBs, but a sensible one will engage with its population, their representatives and its staff and explore the trade-offs they may be willing to make..."_ (Wyatt, 2022) .pull-left[ ### Context + Awareness system you are working in and limitations + e.g. National VTE risk scoring + Built for Acute providers + How do we use it in mental health settings. <br><br> ### Validation + Is this appropriate for your specific population / system? + Has it been tested in you population? ] .pull-right[ ### Monitoring + Change of usecase, e.g.: + Charlson score (Charlson Pompei, et al., 1987) + NEWS2 for COVID-19 patients (Carr Bendayan, et al., 2021) + Model drift / retraining + Interaction with other metrics ### Communication / engagement + Stakeholder engagement + Model, scope and limitations clear? + How can you take feedback? ] --- class: inverse center middle .pull-left[ <img src="https://imgs.xkcd.com/comics/curve_fitting.png" alt="XKCD Curve-fitting" height="600px" /> ] .pull-right[ <br><br><br><br><br><br> __Source:__ xkcd: A webcomic of romance, sarcasm, math, and language 'Curve-Fitting Methods and the messages they send' https://xkcd.com/2048/ ] --- class: references ### References Alten, S. van, B. W. Domingue, T. Galama, et al. (2022). "Reweighting the UK Biobank to Reflect Its Underlying Sampling Population Substantially Reduces Pervasive Selection Bias Due to Volunteering". In: _medRxiv_. DOI: 10.1101/2022.05.16.22275048. <URL: https://www.medrxiv.org/content/early/2022/05/16/2022.05.16.22275048>. Box, G. E. P. (1976). "Science and Statistics". In: _Journal of the American Statistical Association_ 71.356, pp. 791-799. DOI: 10.1080/01621459.1976.10480949. <URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.1976.10480949>. Carr, E., R. Bendayan, D. Bean, et al. (2021). "Evaluation and Improvement of the National Early Warning Score (NEWS2) for COVID-19: A Multi-Hospital Study". In: _BMC Medicine_ 19.1, p. 23. ISSN: 1741-7015. DOI: 10.1186/s12916-020-01893-3. <URL: https://doi.org/10.1186/s12916-020-01893-3>. Charlson, M. E., P. Pompei, K. L. Ales, et al. (1987). "A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation". In: _Journal of Chronic Diseases_ 40.5, pp. 373-83. ISSN: 0021-9681 (Print) 0021-9681 (Linking). DOI: 10/c4rqj6. Wyatt, S. (2022). _Strategies to reduce inequalities in access to planned hospital procedures_. <URL: https://www.midlandsdecisionsupport.nhs.uk/wp-content/uploads/2022/05/Strategies-to-reduce-inequalities-in-access-to-planned-hospital-procedures_20220429iv.pdf>.